

MOBILE DISTRIBUTED SOLUTION FOR DELIVERY AUTOMATION: DESIGN
AND PARTICULARITIES

Anita Lungu

XTS Software

Horia Str, I13, Sc1, Ap1,Craiova, Romania
anita@xts.ro

Abstract: The system presented is a mobile route
management solution built for AldiPress, one of the
leading Dutch companies involved in the distribution
of magazines to the retail business. EcoSys provides
routing itineraries and delivery related information to
approximately 150 drivers that carry out the actual
distribution throughout the Netherlands. The existent
solution was paper based, thus tedious, time
consuming and prone to human error. The paper
describes the specific issues related to designing and
implementing a mobile application that solves the
above mentioned problems. The challenges on
building this application are related, mostly to the
limited resources available on a Symbol SPT 1800
(PalmOS) terminal. Various optimizations are
required to overcome those difficulties and maintain
the speed compulsory for a mobile application.

Keywords: Mobile, PDA, PalmOS, Scanning devices

INTRODUCTION

A short overview of the implemented system is
provided for a better understanding of the overflow.
AldiPress’ distribution centres are situated in Duiven
and Amsterdam. The Duiven center is responsible
with the distribution of the magazines to the various
transport companies involved in the actual deliveries,
while the center in Amsterdam is equipped to handle
all the returns (magazines that are not sold).

AldiPress distributes the magazines in bulk transports
to 15 transport centers. Each retrieves the routes
assigned to it through the Internet. This information

(routes, delivery addresses and specific barcodes) is
made available from within the prior existent
AldiPress ERP system (SAP). This ERP is the
"brain" that organizes and establishes the activity for
each day.

DESIGN CONSIDERATIONS

The application had to transmit the information back
and forth between the ERP (SAP), distribution center
and mobile terminals. Two different applications
were built, one to reside on the desktop computers of
the distribution centers (EcoLite for Windows 2000)
and the other on the mobile terminals (EcoSys for
PalmOS). EcoLite was installed on approximately 10
desktop computers belonging to the distribution
centers while EcoSys was installed on approximately
150 mobile PalmOS terminals.

Fig.1. Main System Components

The distribution centers thus, run EcoLite which
allows the center operators to view and modify (to

some extent) the received routes, as well as to upload
routes to mobile terminals.

Display: High contrast, anti-
reflective 160 x 160 monochrome
LCD display
CPU: DragonBall VZ – 33 MHz
Operating System: Palm OS® 4.X
Memory:16 MB RAM / 4MB ROM
Application Development: FalchNet

Fig. 2. Symbol SPT 1800 Mobile Terminal

Each driver is equipped with a Symbol SPT 1800
mobile terminal. This barcode scanning capable PDA
runs the EcoSys PalmOS mobile application
throughout the route. At the beginning of the day,
each driver inserts his terminal in a cradle, and the
EcoLite operators in that center load a specific route
onto it. At the end of the day, after finishing the
route, the terminal is again put into cradle for
synchronization purposes. The route processing
information is retrieved by EcoLite, and later on sent
to the ERP in Amsterdam.

Fig.3. Desktop EcoLite Application - PrintScreen

TECHNICAL CONSIDERATIONS

The PDA will receive the data from EcoLite as a file
in pdb (Palm Data Base) format then will launch the
EcoSys application. Through it, all the information
needed (such as the clients addresses, the deliveries
for each customer) will be made available to the user.
Identification of the products within this system is
accomplished through a barcode label scanned by the
Symbol terminals.

Operating System and Programming Language

The applications running on a Palm PDA generally
have one thread of execution and are event driven.
They run in turn, a user does not terminate (or exit)
an application he only selects a different one to run.

As a response to this action, the OS terminates the
currently running application and launches the new
selected one. Each application (.exe, .dll) is identified
by the Operating System through a Creator ID that
represents a signature for an application. An Official,
unique list of this Creator IDs is maintained for
reference.

Fig.4. Information maintained inside a Palm database

The environments available for Palm development
include C++, VB, Java as programming languages.
The EcoSys was written using FalchNet Developer
Studio for Palm OS. The programming language was
C++ using a proprietary C API functions.

Database Particularities

Unlike the majority operating systems, the PalmOS
has no file system. All data and programs are stored
on PDA in generic "databases" (the term having no
connection to a relational database model). Such a
Palm database contains a variety of information in
records but this information is useless unless
manipulated by an application. Each database on
PDA has a unique name. For example, the opening of
such a database is done in the following way:

Boolean CRouteData::OpenDB(Char* szDBName){
 LocalID locID =
DmFindDatabase(CARDNR,szDBName);
 m_dbRef =
DmOpenDatabase(CARDNR,locID,dmModeReadWr
ite);
}

Working with a Palm database involves quite a low
level programming as can be seen from the following
example. A locking is executed on the record level in
order to grant the unique access to a record. The next
step obtains a pointer to the memory where the
record is stored and the length in bytes. The
information is copied in a buffer as an array of bytes
from which the required data is extracted according
to the predefined format of each record. In order to
retrieve a record of information from a database, the
following code should be executed:

Char* CRouteData::GetRecordByID(UInt32
id,DmOpenRef ref){
 Char* ret;
 UInt16 index;

 DmFindRecordByID(ref,id,&index);

 MemHandle hRec = DmGetRecord(ref,index);
//returns a handle to a record

 Char* pRec = (Char*)MemHandleLock(hRec);
//lock handle, returns a pointer to a record

 UInt32 size = StrLen(pRec);
 ret = (Char*)MemPtrNew(size+1);
 StrCopy(ret,pRec);
 MemHandleUnlock(hRec);//release handle
 DmReleaseRecord(ref,index,false);
 return ret;
}

Specific Optimizations

One of the specific requirements from the application
regards data corruption. The information should not
be corrupted in case a battery failure or a hard reset
appears during normal operation. Moreover, should
such events occur, on restart the user has to be
repositioned in the same place of the route processing
(the same customer and product delivery). To adjust
these requirements, a continuous concord had to me
maintained between the user’s operations and the
Palm database.

 Considering the non-relational model of the database
and the keeping of records as arrays of bytes, EcoSys
has to implement functionalities specific to a
database management system. The complexity of the
application is thus increased while the requirements,
in terms of response time to the user, have to be also
accommodated.

In order to accomplish this, a preprocessing of the
pdb takes place upon starting the application. The
entire database is parsed byte by byte and an
indexing structure (global vectors) is stored in RAM.
These indexes offer information on the starting
position of every customer related data as well as
starting positions in memory for the deliveries of
each client. By keeping all this information in RAM,
it is significantly easier to access the needed
information. The memory is not parsed every time in
order to find a specific record, instead the exact
location is addressed.

By choosing this option, part of the computational
effort is done at the beginning of the application
making a lot faster accessing the data during the
current workflow. The time response of a user for
accessing needed data or going through different

screens is always under a second, which was
considered acceptable.

To prevent the lack of synchronization between the
user’s actions and the database which could
potentially lead to database corruption, the status of
the route processing is continuously maintained in
the database. The route can have the status as
unprocessed, currently being processed or completed.
Upon restart, the database is parsed and the index
vectors rebuilt. Afterwards the user is repositioned on
the exact position in completing the route as before
the failure.

Fig.5. Applications Screens

As workflow, the application has 22 screens. The
passing between them having as top difficulty
optimizing the database accesses considering on one
hand the continuous synchronization between the
users actions and the database content and on the
other hand how time consuming database accesses
are.

Another specific requirement was for the application
to be able to work in different ways while
maintaining mostly the same workflow. One version
of the application was to be used only for training
purposes another for a simplified workflow. In order
to achieve that without keeping different versions of
the software, part of the code was written using
precompiler directives (#ifdef) and each version is
obtained from the same code by setting the
corresponding directives and then recompiling.

The normal mode functioning of the application
identifies a package solely by scanning. This was
chosen so as to minimize the risk of human error: in
case the scanned code does not belong to the current
order or client, the user is warned and the operation
can be restarted.

Still, in case the scanner malfunctions, a "manual"
mode of working is provided for the application. The
barcode data is manually imputed by the user. This
specific working mode is protected by a password.

The application was developed in the Windows
Emulator and after reaching a stable version it was
tested on the real PDA device. In order to avoid
making some copies of the data structures all the
database interface functions worked through using
pointers to structures. Considerring the limited
memory available (RAM), special effort went into
making sure there are no memory leaks. In order to
ensure this, the Windows emulator testing mode was
used. This specific mode randomly generates button
click events (Gremlins). Using this technique, the
application is put in an infinite loop of testing and the
memory allocation and deallocation is continuously
checked.

Because of the small screen (160X160 pixels), the
interface design had to be done carefully. An
application was built that that correlates the relatively
complex interaction with the user (a lot of
information has to be displayed, input taken from the
user) to the small display surface.

A scanning library was developed for the scanning
functionality. It was based on API level barcode
functions from Symbol technologies.

Mobile Application Features Overview

9 Instant overview.

At first glance the driver is provided with an
inventory of the customers to visit and the items
to be delivered on that route.

9 Ease of use.

During the delivery all information and control
resides within the mobile terminal. The driver
has only to follow the workflow indicated by the
terminal. To help in accommodating more
unusual customer requests, special instructions
can be transmitted to the driver by means of
customer originated notes that are displayed on
the PDA prior to that particular delivery. In case
a delivery can not be completed the driver can
select the reason with a simple screen tap. If
needed, it can also add a text note describing the
problem.

9 Flexible and accurate workflow.

EcoSys has support for on-the-spot delivery
address reordering, providing flexibility in
processing the route. In case the Symbol scanner
is damaged during a delivery, the application can
still function in a password protected "manual
mode". Delivery of each item is confirmed
through scanning its barcode and matching it
against the local database of barcodes. In case of
mismatch (eg. the scanned barcode pertains to
another delivery) the driver is warned and the

scanning can be repeated. Each transaction is
time stamped for future reference.

Mobile Application Benefits Overview

9 Reducing Errors.

EcoSys’ workflow provides fast and errorless
data collection using barcode scanning. It
replaces the paperwork with an exchange of
digital information thus eliminating end-of-day
manual data entry. This reduces human errors
that most often translate into dissatisfied
customers, low productivity and diminished
revenue.

9 Increasing system efficiency.

EcoSys addresses some of the problems and
slow downs existent prior to the introduction of
the digital mobile system. The delivery process
was costly in terms of time and prone to errors.
It generated large amounts of paperwork, that
had to be processed later on by company staff as
deliveries and returns were verified. There were
inevitable delays in using order and inventory
information, affecting business forecasting,
inventory control and company cash flow.
EcoSys provides a reliable and cost-effective
solution that keeps mobile workers well
informed while in the field. It permits them to
efficiently access and store information about
each customer and their respective deliveries.
The information resulted from a route processing
is already in digital format, hence easily
uploaded to the main SAP system for further
analysis.

9 Accurate circulation numbers.

 AldiPress delivery workers visit roughly the
same outlets at regular intervals. EcoSys
efficiently and effortlessly registers the
circulation numbers in terms of copies
distributed, empty crates intake, location of
unsold magazines. By replacing manual
paperwork with simple scanning and screen
tapping, at the end of a route a complete and
accurate report is already available on the
terminal. These reports are sent back to the SAP
system of AldiPress in Amsterdam. This data,
when further analyzed, has a great business
value, allowing AldiPress to reduce costs by
properly allocating copies amongst locations,
and allowing for targeted advertising actions.

REFERENCES

Neil Rhodes, Julie McKeehan (1998) Palm
Programming: The Developer’s Guide

